Viewing Some Ordinary Differential Equations from the Angle of Derivative Polynomials
نویسندگان
چکیده مقاله:
In the paper, the authors view some ordinary differential equations and their solutions from the angle of (the generalized) derivative polynomials and simplify some known identities for the Bernoulli numbers and polynomials, the Frobenius-Euler polynomials, the Euler numbers and polynomials, in terms of the Stirling numbers of the first and second kinds.
منابع مشابه
extensions of some polynomial inequalities to the polar derivative
توسیع تعدادی از نامساوی های چند جمله ای در مشتق قطبی
15 صفحه اولSome identities of degenerate Fubini polynomials arising from differential equations
Recently, Kim et al. have studied degenerate Fubini polynomials in [T. Kim, D. V. Dolgy, D. S. Kim, J. J. Seo, J. Nonlinear Sci. Appl., 9 (2016), 2857–2864]. Jang and Kim presented some identities of Fubini polynomials arising from differential equations in [G.-W. Jang, T. Kim, Adv. Studies Contem. Math., 28 (2018), to appear]. In this paper, we drive differential equations from the generating ...
متن کاملOn the Oscillatory Integration of Some Ordinary Differential Equations
Conditions are given for a class of nonlinear ordinary differential equations x′′ + a(t)w(x) = 0, t ≥ t0 ≥ 1, which includes the linear equation to possess solutions x(t) with prescribed oblique asymptote that have an oscillatory pseudo-wronskian x′(t)− x(t) t .
متن کاملSolutions Approaching Polynomials at Infinity to Nonlinear Ordinary Differential Equations
This paper concerns the solutions approaching polynomials at ∞ to n-th order (n > 1) nonlinear ordinary differential equations, in which the nonlinear term depends on time t and on x, x′, . . . , x(N), where x is the unknown function and N is an integer with 0 ≤ N ≤ n − 1. For each given integer m with max{1, N} ≤ m ≤ n− 1, conditions are given which guarantee that, for any real polynomial of d...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 16 شماره 1
صفحات 77- 95
تاریخ انتشار 2021-04
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023